On the role of surface morphology in impacting-freezing dynamics of supercooled droplets

Author:

Hosseini S. R.,Moghimi M.,Nouri N. M.

Abstract

AbstractA thorough understanding of droplet impact and freezing is vital in preventing ice accretion on many outdoor devices. This simulation-based study investigated the effect of surface morphology on the impacting-freezing process of a supercooled droplet. Also, the variations of Weber number and supercooling temperature were studied numerically. The droplet impact and freezing process were simulated with the volume of fluid method and freezing model. A more accurate simulation was achieved by modeling the supercooled droplet and the dynamic contact angle. At the given ranges of the input parameters, the main factors that guaranteed droplet rebounding after collision were determined. The supercooling temperature and the groove width should be above 266 K and less than 0.21 mm, respectively. The droplet should also maintain its cohesion and integrity during impact. Creating grooves on a surface is novel and paves a new way to understand the impact and solidification of water droplets in supercooled conditions.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3