Author:
Huang Xin,Wang Chenyang,Hou Junfeng,Du Chenyang,Liu Sujun,Kang Juan,Lu Hongfang,Xie Yingxin,Guo Tiancai,Ma Dongyun
Abstract
AbstractThe objective of this work was to characterize the accumulation of carbon (C) and nitrogen (N), and the translocation of wheat (Triticum aestivum L.) cultivars to achieve both high-quality and high-yield. Twenty-four wheat cultivars, including 12 cultivars containing high-quality gluten subunit 5 + 10 at Glu-D1, and 12 cultivars with no Glu-D1 5 + 10, were planted at Yuanyang and Xuchang in Henan Province, during 2016–2017, and 2017–2018 cropping seasons. Wheat cultivars containing Glu-D1 5 + 10 had an advantage in grain quality traits. Significant difference (P < 0.05) was observed for grain protein concentration (GPC) between 5 + 10 group and no 5 + 10 group. Grain yield (GY) was significantly correlated with kernel number (KN) (r = 0.778, P < 0.01), thousand-kernel weight (TKW) (r = 0.559, P < 0.01), dry matter accumulation at post-anthesis (r = 0.443, P < 0.05), and stem water-soluble carbohydrate (WSC) accumulation (r = 0.487, P < 0.05) and translocation amount (r = 0.490, P < 0.05). GPC, dough stability time (DST) and nitrogen agronomic efficiency (NAE) were significantly correlated with nitrogen accumulation (NAA) at maturity stage (r = 0.524, = 0.404, = 0.418, P < 0.01, < 0.05, < 0.05, respectively), and nitrogen translocation amount (r = 0.512, = 0.471, = 0.405, P < 0.05, < 0.05, < 0.05, respectively). These results suggest that good-quality, high-yield, and high-efficiency could achieve through the selection of high-quality wheat cultivars and coordination of C and N accumulation and translocation. High-quality gluten subunit gene Glu-D1 5 + 10 and stem WSC could be used as a selection index for breeding and production of high-quality and high-yield wheat.
Publisher
Springer Science and Business Media LLC