New non-ureolytic heterotrophic microbial induced carbonate precipitation for suppression of sand dune wind erosion

Author:

Hemayati Mohammad,Nikooee EhsanORCID,Habibagahi GhassemORCID,Niazi AliORCID,Afzali Sayed FakhreddinORCID

Abstract

AbstractThe detrimental effects of sand storms on agriculture, human health, transportation network, and infrastructures pose serious threats in many countries worldwide. Hence, wind erosion is considered a global challenge. An environmental-friendly method to suppress wind erosion is to employ microbially induced carbonate precipitation (MICP). However, the by-products of ureolysis-based MICP, such as ammonia, are not favorable when produced in large volumes. This study introduces two calcium formate-bacteria compositions for non-ureolytic MICP and comprehensively compares their performance with two calcium acetate-bacteria compositions, all of which do not produce ammonia. The considered bacteria are Bacillus subtilis and Bacillus amyloliquefaciens. First, the optimized values of factors controlling CaCO3 production were determined. Then, wind tunnel tests were performed on sand dune samples treated with the optimized compositions, where wind erosion resistance, threshold detachment velocity, and sand bombardment resistance were measured. An optical microscope, scanning electron microscope (SEM), and X-ray diffraction analysis were employed to evaluate the CaCO3 polymorph. Calcium formate-based compositions performed much better than the acetate-based compositions in producing CaCO3. Moreover, B. subtilis produced more CaCO3 than B. amyloliquefaciens. SEM micrographs clearly illustrated precipitation-induced active and inactive bounds and imprints of bacteria on CaCO3. All compositions considerably reduced wind erosion.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3