Developing a hybrid time-series artificial intelligence model to forecast energy use in buildings

Author:

Ngo Ngoc-Tri,Pham Anh-Duc,Truong Thi Thu Ha,Truong Ngoc-Son,Huynh Nhat-To

Abstract

AbstractThe development of a reliable energy use prediction model is still difficult due to the inherent complex pattern of energy use data. There are few studies developing a prediction model for the one-day-ahead energy use prediction in buildings and optimizing the hyperparameters of a prediction model is necessary. This study aimed to propose a hybrid artificial intelligence model for forecasting one-day ahead time-series energy consumption in buildings. The proposed model was developed based on the integration of the Seasonal Autoregressive integrated Moving average, the Firefly-inspired Optimization algorithm, and the support vector Regression (SAMFOR). A large dataset of energy consumption in 30-min intervals, temporal data, and weather data from six real-world buildings in Vietnam was used to train and test the model. Sensitivity analyses were performed to identify appropriate model inputs. Comparison results show that the SAMFOR model was more effective than the others such as the seasonal autoregressive integrated moving average (SARIMA) and support vector regression (SVR), SARIMA-SVR, and random forests (RF) models. Evaluation results on real-world building depicted that the proposed SAMFOR model achieved the highest accuracy with the root-mean-square error (RMSE) of 1.77 kWh in, mean absolute percentage error (MAPE) of 9.56%, and correlation coefficient (R) of 0.914. The comparison results confirmed that the SAMFOR model was effective for forecasting one-day-ahead energy consumption. The study contributes to (1) the knowledge domain by proposing the hybrid SAMFOR model for forecasting energy consumption in buildings; and (2) the state of practice by providing building managers or users with a powerful tool for analyzing and improving building energy performance.

Funder

Vingroup Innovation Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3