Early overnutrition sensitizes the growth hormone axis to the impact of diet-induced obesity via sex-divergent mechanisms

Author:

Sanchez-Garrido M. A.,Ruiz-Pino F.,Pozo-Salas A. I.,Castellano J. M.,Vazquez M. J.,Luque R. M.,Tena-Sempere M.

Abstract

AbstractIn addition to its essential role in the physiological control of longitudinal growth, growth-hormone (GH) is endowed with relevant metabolic functions, including anabolic actions in muscle, lipolysis in adipose-tissue and glycemic modulation. Adult obesity is known to negatively impact GH-axis, thereby promoting a vicious circle that may contribute to the exacerbation of the metabolic complications of overweight. Yet, to what extent early-overnutrition sensitizes the somatotropic-axis to the deleterious effects of obesity remains largely unexplored. Using a rat-model of sequential exposure to obesogenic insults, namely postnatal-overfeeding during lactation and high-fat diet (HFD) after weaning, we evaluated in both sexes the individual and combined impact of these nutritional challenges upon key elements of the somatotropic-axis. While feeding HFD per se had a modest impact on the adult GH-axis, early overnutrition had durable effects on key elements of the somatotropic-system, which were sexually different, with a significant inhibition of pituitary gene expression of GH-releasing hormone-receptor (GHRH-R) and somatostatin receptor-5 (SST5) in males, but an increase in pituitary GHRH-R, SST2, SST5, GH secretagogue-receptor (GHS-R) and ghrelin expression in females. Notably, early-overnutrition sensitized the GH-axis to the deleterious impact of HFD, with a significant suppression of pituitary GH expression in both sexes and lowering of circulating GH levels in females. Yet, despite their similar metabolic perturbations, males and females displayed rather distinct alterations of key somatotropic-regulators/ mediators. Our data document a synergistic effect of postnatal-overnutrition on the detrimental impact of HFD-induced obesity on key elements of the adult GH-axis, which is conducted via mechanisms that are sexually-divergent.

Funder

European Commission

Instituto de Salud Carlos III

Ministerio de Economía y Competitividad

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3