Author:
Yequan Huang,Jingyun Guo,Yu Guo,Yan Cui,Zhechuang Li,Xuechuan Dong,Xiaolin Ning
Abstract
AbstractThis paper introduces a novel focusing method Refraction Topography (RT) for wide-angle refraction measurement. The agreement of the test results obtained using RT is evaluated against simulation results and expected refraction. RT develops a refraction algorithm on fundus images at various focusing statuses. Unlike conventional techniques for peripheral refraction measurement, RT requires the subject to stare at a stationary fixation target. The refraction algorithm calculates the focus measure for multiple images at the Point of Interest and formulates them into a focus profile. The maximum focus measure correlates with the optimal focus position. Refraction Characterization Function (RCF) is proposed to translate the focus position into refraction determination, thus forming the refraction topography. The refraction characterization of RT optical system is performed using Isabel schematic eye. Three test eyes of − 15 D, 0 D, and + 15 D are defined, and expected refraction is obtained through simulation on an independent test schematic eye. Both simulation results and experimental results are obtained by combining the test eyes and RT system. Test results are compared with simulation results and expected refraction. The study demonstrates agreement among the test results, simulation results, and expected refraction on three test eyes.
Funder
Shenzhen Science and Technology Program
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献