Bio-fertilizer and rotten straw amendments alter the rhizosphere bacterial community and increase oat productivity in a saline–alkaline environment

Author:

Lu Peina,Bainard Luke D.,Ma Bin,Liu Jinghui

Abstract

AbstractSaline–alkaline conditions can limit crop productivity and the role of soil microbes in nutrient cycling in arid and semi-arid regions throughout the world. A better understanding of how soil amendments and plant varieties affect rhizosphere microbial communities in saline–alkaline environments is important for the development of sustainable and productive agricultural systems under these challenging conditions. The objective of this study was to determine the effect of organic soil amendments on crop yield, soil physicochemical properties and rhizosphere bacterial communities of two oat cultivars in a saline–alkaline soil. The experiment was conducted in a semi-arid region of Northern China and involved growing two oat cultivars with varying levels of saline–alkaline tolerance under four different amendment treatments: (1) control (no amendments), (2) bio-fertilizer, (3) rotten straw, and (4) combination of bio-fertilizer and rotten straw. The combined bio-fertilizer and rotten straw amendment treatment resulted in the highest oat yields, reduced soil pH, and increased soil salt content for both cultivars. Baiyan2 (tolerant cultivar) had a higher bacterial α-diversity, relative abundance of Proteobacteria and Acidobacteria, and lower relative abundance of Firmicutes compared to Caoyou1 (sensitive cultivar). The rotten straw treatment and combined amendment treatment decreased bacterial α-diversity and the abundance of Proteobacteria, and increased the abundance of Firmicutes, which were positively correlated with soil salt, available nitrogen, phosphorous and potassium for both cultivars. Our study suggested using tolerant oat cultivars with the combined application of rotten straw and bio-fertilizer could be an effective strategy in remediating saline–alkaline soils.

Funder

The MOE-AAFC PhD Research program

The Scientific and Technological Innovation Team of Inner Mongolia

The Multi-grain Engineering and Technology Center of Inner Mongolia

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3