Descriptor engineering in machine learning regression of electronic structure properties for 2D materials

Author:

Dau Minh Tuan,Al Khalfioui Mohamed,Michon Adrien,Reserbat-Plantey Antoine,Vézian Stéphane,Boucaud Philippe

Abstract

AbstractWe build new material descriptors to predict the band gap and the work function of 2D materials by tree-based machine-learning models. The descriptor’s construction is based on vectorizing property matrices and on empirical property function, leading to mixing features that require low-resource computations. Combined with database-based features, the mixing features significantly improve the training and prediction of the models. We find R$$^{2}$$ 2 greater than 0.9 and mean absolute errors (MAE) smaller than 0.23 eV both for the training and prediction. The highest R$$^{2}$$ 2 of 0.95, 0.98 and the smallest MAE of 0.16 eV and 0.10 eV were obtained by using extreme gradient boosting for the bandgap and work-function predictions, respectively. These metrics were greatly improved as compared to those of database features-based predictions. We also find that the hybrid features slightly reduce the overfitting despite a small scale of the dataset. The relevance of the descriptor-based method was assessed by predicting and comparing the electronic properties of several 2D materials belonging to new classes (oxides, nitrides, carbides) with those of conventional computations. Our work provides a guideline to efficiently engineer descriptors by using vectorized property matrices and hybrid features for predicting 2D materials properties via ensemble models.

Funder

Agence Nationale de la Recherche

UCA-CSI 2021

Doeblin Federation

INP-CNRS Tremplin 2022

Dialog 2022.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3