Author:
Qian Hanyu,Moreira Geisianny,Vanegas Diana,Tang Yifan,Pola Cicero,Gomes Carmen,McLamore Eric,Bliznyuk Nikolay
Abstract
AbstractLaser-inscribed graphene (LIG), initially developed for graphene supercapacitors, has found widespread use in sensor research and development, particularly as a platform for low-cost electrochemical sensing. However, batch-to-batch variation in LIG fabrication introduces uncertainty that cannot be adequately tracked during manufacturing process, limiting scalability. Therefore, there is an urgent need for robust quality control (QC) methodologies to identify and select similar and functional LIG electrodes for sensor fabrication. For the first time, we have developed a statistical workflow and an open-source hierarchical clustering tool for QC analysis in LIG electrode fabrication. The QC process was challenged with multi-operator cyclic voltammetry (CV) data for bare and metalized LIG. As a proof of concept, we employed the developed QC process for laboratory-scale manufacturing of LIG-based biosensors. The study demonstrates that our QC process can rapidly identify similar LIG electrodes from large batches (n ≥ 36) of electrodes, leading to a reduction in biosensor measurement variation by approximately 13% compared to the control group without QC. The statistical workflow and open-source code presented here provide a versatile toolkit for clustering analysis, opening a pathway toward scalable manufacturing of LIG electrodes in sensing. In addition, we establish a data repository for further study of LIG variation.
Funder
University of Florida
National Institute on Alcohol Abuse and Alcoholism
Clemson University
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献