Relationship between manual dexterity and left–right asymmetry of anatomical and functional properties of corticofugal tracts revealed by T2-weighted brain images

Author:

Oka Noriyuki,Sakoh Masaharu,Hirayama Misato,Niiyama Mayu,Gjedde Albert

Abstract

AbstractThe corticofugal tracts (CFT) are key agents of upper limb motor function. Although the tracts form high-intensity regions relative to surrounding tissue in T2-weighted magnetic resonance images (T2WI), the precise relations of signal intensities of the left and right CFT regions to hand function are unknown. Here, we tested the hypothesis that the different signal intensities between the left and right CFT signify clinically important differences of hand motor function. Eleven right-handed and eleven left-handed healthy volunteers participated in the study. Based on horizontal T2WI estimates, we confirmed the relationship between the signal intensity ratios of the peak values of each CFT in the posterior limbs of the internal capsules (right CFT vs. left CFT). The ratios included the asymmetry indices of the hand motor functions, including grip and pinch strength, as well as the target test (TT) that expressed the speed and accuracy of hitting a target ([right-hand score − left-hand score]/[right-hand score + left-hand score]), using simple linear regression. The signal intensity ratios of each CFT structure maintained significant linear relations with the asymmetry index of the speed (R2 = 0.493, P = 0.0003) and accuracy (R2 = 0.348, P = 0.004) of the TT. We found no significant association between left and right CFT structures for grip or pinch strengths. The findings are consistent with the hypothesis that the different signal intensities of the left and right CFT images captured by T2WI serve as biological markers that reflect the dominance of manual dexterity.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3