Aluminum Matrix Composites Manufactured using Nitridation-Induced Self-Forming Process

Author:

Lee Kon-Bae,Kim Sung-Hoon,Kim Dae-Young,Cha Pil-Ryung,Kim Hae-Sung,Choi Hyun-Joo,Ahn Jae-Pyong

Abstract

AbstractConventional manufacturing processes for aluminum matrix composites (AMCs) involve complex procedures that require unique equipment and skills at each stage. This increases the process costs and limits the scope of potential applications. In this study, a simple and facile route for AMC manufacturing is developed, a mixture of Al powder and the ceramic reinforcement is simply heated under nitrogen atmosphere to produce the composite. During heating under nitrogen atmosphere, the surface modification of both Al and the reinforcement is induced by nitridation. When the oxide layer covering Al powder surface is transformed to nitrides, temperature in the local region increases rapidly, resulting in a partial melt of Al powder. The molten Al infiltrates into the empty space among Al powder and reinforcement, thereby enabling consolidation of powders without external forces. It is possible to fabricate AMCs with various types, sizes, volume fractions, and morphologies of the reinforcement. Furthermore, the manufacturing temperature can be lowered below the melting point of Al (or the solidus temperature for alloys) because of the exothermic nature of the nitridation, which prevents formation of un-wanted reactants. The relative simplicity of this process will not only provide sufficient price competitiveness for the final products but also contribute to the expansion of the application scope of AMCs.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3