Improving efficiency of semitransparent organic solar cells by constructing semitransparent microcavity

Author:

Annabi Milani Elmira,Piralaee Mina,Asgari Asghar

Abstract

AbstractSemitransparent organic solar cells have become attractive recently because of their photon harvesting in the near-infrared and ultraviolet range and passing in the visible light region. Semitransparent organic solar cells with Glass/MoO3/Ag/MoO3/PBDB-T:ITIC/TiO2/Ag/PML/1DPCs structure have been studied in this work and the effects microcavity with 1-dimensional photonic crystals (1DPCs) on the solar cell performance such as the power conversion efficiency, the average visible transmittance, Light utilization efficiency (LUE), the color coordinates in the CIE color space, and CIE LAB are investigated. The analytical calculation including the density of exactions and their displacement is used to model the devices. The model shows that the presence of microcavity can improve the power conversion efficiency by about %17 in comparison with the absence of microcavity. Although the transmission is decreasing slightly, microcavity does not change the color coordinates much. The device can transmit high-quality light with a near-white sensation to the human eye.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Overview: Photovoltaic Solar Cells, Science, Materials, Artificial Intelligence, Nanotechnology and State of the Art;Trends and Innovations in Energetic Sources, Functional Compounds and Biotechnology;2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3