Author:
Park Seungman,Joo Yoon Ki,Chen Yun
Abstract
Abstract
We present a high-throughput microfluidics technique facilitating in situ measurements of cell mechanics parameters at the dorsal side of the cell, including molecular binding strengths, local traction forces, and viscoelastic properties. By adjusting the flow rate, the force magnitude exerted on the cell can be modulated ranging from ~14 pN to 2 nN to perturb various force-dependent processees in cells. Time-lapse images were acquired to record events due to such perturbation. The values of various mechanical parameters are subsequently obtained by single particle tracking. Up to 50 events can be measured simultaneously in a single experiment. Integrating the microfluidic techniques with the analytic framework established in computational fluid dynamics, our method is physiologically relevant, reliable, economic and efficient.
Publisher
Springer Science and Business Media LLC
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献