Author:
Friedrich Julia,Beste Christian
Abstract
AbstractResponse inhibition as a central facet of executive functioning is no homogeneous construct. Interference inhibition constitutes a subcomponent of response inhibition and refers to inhibitory control over responses that are automatically triggered by irrelevant stimulus dimensions as measured by the Simon task. While there is evidence that the area-specific modulation of tactile information affects the act of action withholding, effects in the context of interference inhibition remain elusive. We conducted a tactile version of the Simon task with stimuli designed to be predominantly processed in the primary (40 Hz) or secondary (150 Hz) somatosensory cortex. On the basis of EEG recordings, we performed signal decomposition and source localization. Behavioral results reveal that response execution is more efficient when sensory information is mainly processed via SII, compared to SI sensory areas during non-conflicting trials. When accounting for intermingled coding levels by temporally decomposing EEG data, the results show that experimental variations depending on sensory area-specific processing differences specifically affect motor and not sensory processes. Modulations of motor-related processes are linked to activation differences in the superior parietal cortex (BA7). It is concluded that the SII cortical area supporting cognitive preprocessing of tactile input fosters automatic tactile information processing by facilitating stimulus-response mapping in posterior parietal regions.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献