Broadband high-efficiency 3-bit coding metasurface in transmission mode based on the polarization conversion technique

Author:

Karimipour Majid,Heydari Mohammad Bagher,Aryanian Iman

Abstract

AbstractThe main drawback of the transmissive focusing metasurface (TFM) is its low operational bandwidth and aperture efficiency. Increasing both of these radiation characteristics simultaneously is a major challenge for these structures. This paper introduces a novel multi-state coding metasurface that utilizes system-level and element-level synthesis approaches to enhance frequency bandwidth and aperture efficiency. Unlike most of the TFMs proposed in this field, the proposed novel element consists of only two dielectric layers. The multi-frequency phase synthesis (MFPS) approach, a well-established broadband technique, is utilized for the system-level synthesis approach. An optimization algorithm is utilized to balance the phase error in the whole band in terms of gain variations and aperture efficiency. At the element design level, a PCT-based wideband technology is utilized and implemented by a subwavelength non-resonant element. The element is composed of three C-shaped metallic patterns, and the metal layers are printed on both sides of two identical dielectric layers without using any metalized via in the configuration. By simply changing the angle of arc curves in all layers, eight states of phase quantization are achieved. The amplitude of the transmitted wave with rotated polarization is larger than 0.9 from 12.3 to 16.5 GHz, except for state 4, which has an amplitude greater than 0.5 at the beginning of the band. A 25 $$\times $$ ×  25-element TFM was designed, fabricated, and tested using the aforementioned broadband technique (MFPS along with PCT-based wideband technology). The measurement results show that the 1-dB gain bandwidth of the antenna is 12.3–16.5 GHz, which is equivalent to 29%. The maximum measured aperture efficiency is 53.6%, occurring at 12.8 GHz. The proposed metasurface is classified in the group of broadband high-efficiency TFMs.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3