Enhanced osseointegration through direct energy deposition porous coating for cementless orthopedic implant fixation

Author:

Ryu Dong Jin,Jung Ara,Ban Hun Yeong,Kwak Tae Yang,Shin Eun Joo,Gweon Bomi,Lim Dohyung,Wang Joon Ho

Abstract

AbstractDirect energy deposition (DED) is a newly developed 3D metal printing technique that can be utilized on a porous surface coating of joint implants, however there is still a lack of studies on what advantages DED has over conventional techniques. We conducted a systematic mechanical and biological comparative study of porous coatings prepared using the DED method and other commercially available technologies including titanium plasma spray (TPS), and powder bed fusion (PBF). DED showed higher porosity surface (48.54%) than TPS (21.4%) and PBF (35.91%) with comparable fatigue cycle. At initial cell adhesion, cells on DED and PBF surface appeared to spread well with distinct actin stress fibers through immunofluorescence study. It means that the osteoblasts bind more strongly to the DED and PBF surface. Also, DED surface showed higher cell proliferation (1.27 times higher than TPS and PBF) and osteoblast cell activity (1.28 times higher than PBF) for 2 weeks culture in vitro test. In addition, DED surface showed better bone to implant contact and new bone formation than TPS in in vivo study. DED surface also showed consistently good osseointegration performance throughout the early and late period of osseointegration. Collectively, these results show that the DED coating method is an innovative technology that can be utilized to make cementless joint implants.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3