Biosorption of cationic Hg2+ and Remazol brilliant blue anionic dye from binary solution using Gelidium corneum biomass

Author:

El-Ahmady Ali El-Naggar NouraORCID,Hamouda Ragaa A.,El-Khateeb Ayman Y.,Rabei Nashwa H.

Abstract

AbstractRemazol brilliant blue (RBB) is an anthraquinone anionic dye that has several commercial uses, especially in the textile industries and is well-known for its detrimental impacts on marine life and the surrounding ecosystem. Mercury (Hg2+) is also one of the most severe hazardous environmental contaminants due to its bioaccumulation through the food chain and high toxicity to the human embryo and fetus. The biosorption potential of Gelidium corneum biomass for bioremoval of Hg2+ and RBB dye simultaneously from binary mixture was assessed. The effects of initial pH, contact time, Hg2+, RBB, and biomass concentrations on the biosorption process were investigated in 50 batch experiments using a Face-centered central composite design. The maximum removal percentage of Hg2+ (98.25%) was achieved in the run no. 14, under optimum experimental conditions: 200 mg/L Hg2+, 75 mg/L RBB, pH 5. At 30 °C, 4 g/L algal biomass was used, with a contact time of 180 min. Whereas, the maximum removal percentage of RBB (89.18%) was obtained in the run no. 49 using 200 mg/L Hg2+, 100 mg/L RBB, pH 5, 4 g/L algal biomass and 180 min of contact time. FTIR analysis of Gelidium corneum biomass surface demonstrated the presence of many functional groups that are important binding sites responsible for Hg2+ and RBB biosorption. SEM analysis showed apparent morphological alterations including surface shrinkage and the appearance of new shiny adsorbate ion particles on the Gelidium corneum biomass surface after the biosorption process. The EDX study reveals an additional optical absorption peak for Hg2+, confirming the role of Gelidium corneum biomass in Hg2+ biosorption. In conclusion, Gelidium corneum biomass has been shown to be an eco-friendly, sustainable, promising, cost-effective and biodegradable biosorbent to simultaneously biosorb Hg2+ and RBB dye from aquatic ecosystems.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3