Abstract
Abstract
The influenza epidemic is a huge burden to public health. Current influenza vaccines provide limited protection against new variants due to frequent mutation of the virus. The continual emergence of novel variants necessitates the method rapidly monitoring influenza virus infection in experimental systems. Although several replication-competent reporter viruses carrying fluorescent proteins or small luciferase have been generated in previous studies, visualizing influenza virus infection via such strategy requires reverse genetic modification for each viral strain which is usually time-consuming and inconvenient. Here, we created a novel influenza A nucleoprotein (NP) dependent reporter gene transcription activation module using NP-specific nanobodies. Our results demonstrated the modular design allowed reporter genes (mNeonGreen fluorescent protein and Gaussia luciferase) specifically expressing to detect intracellular NP protein, and therefore acts as a universal biosensor to monitor infection of various influenza A subtypes in living cells. The new system may provide a powerful tool to analyze influenza A infections at the cellular level to facilitate new antiviral drug discovery. Moreover, this approach may easily extend to develop live-cell biosensors for other viruses.
Funder
Emergency technical support project of General Administration of Customs of China
National Natural Science Foundation of China
Xiamen University President Fund Project
Publisher
Springer Science and Business Media LLC
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献