Physics-informed neural network simulation of thermal cavity flow

Author:

Fowler Eric,McDevitt Christopher J.,Roy Subrata

Abstract

AbstractPhysics-informed neural networks (PINNs) are an emerging technology that can be used both in place of and in conjunction with conventional simulation methods. In this paper, we used PINNs to perform a forward simulation without leveraging known data. Our simulation was of a 2D natural convection-driven cavity using the vorticity-stream function formulation of the Navier-Stokes equations. We used both 2D simulations across the x and z domains at constant Rayleigh (Ra) numbers and 3D simulations across the x, z and Ra domains. The 3D simulation was tested for a PINN’s ability to learn solutions in a higher-dimensional space than standard simulations. The results were validated against published solutions at Ra values of 10$$^{3}$$ 3 , 10$$^{4}$$ 4 , 10$$^{5}$$ 5 , and 10$$^{6}$$ 6 . Both the 2D simulations and 3D simulations successfully matched the expected results. For the 2D cases, more training iterations were needed for the model to converge at higher Ra values (10$$^5$$ 5 and 10$$^6$$ 6 ) than at lower Ra (10$$^3$$ 3 and 10$$^4$$ 4 ) indicating increased nonlinear fluid-thermal coupling. The 3D case was also able to converge but, but it required more training than any of the 2D cases due to the curse of dimensionality. These results showed the validity of standard simulations via PINNs and the feasibility of higher-order parameter space solutions that are not possible using conventional methods. They also showcased the additional computational demand associated with increasing the dimensionality of the learned parameter space.

Funder

NASA Space Research Initiative

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3