Fine-tuning digital FIR filters with gray wolf optimization for peak performance

Author:

R Anand,Samiappan Sathishkumar,Prabukumar M.

Abstract

AbstractThe design of optimum filters constitutes a fundamental aspect within the realm of signal processing applications. The process entails the calculation of ideal coefficients for a filter in order to get a passband with a flat response and an unlimited level of attenuation in the stopband. The objective of this work is to solve the FIR filter design problem and to compare the optimal solutions obtained from evolutionary algorithms. The design of optimal FIR low pass (LP), high pass (HP), and band stop (BS) filters is achieved by the utilization of nature-inspired optimization approaches, namely gray wolf optimization ,cuckoo search, particle swarm optimization, and genetic algorithm. The filters are evaluated in terms of their stop band attenuation, pass band ripples, and departure from the anticipated response. In addition, this study compares the optimization strategies applied in the context of algorithm execution time which is achievement of global optimal outcomes for the design of digital finite impulse response (FIR) filters. The results indicate that when the Gray wolf algorithm is applied to the development of a finite impulse response (FIR) filter, it produces a higher level of performance than other approaches, as supported by enhanced design precision, decreased execution time, and achievement of an optimal solution.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3