Left ventricular active strain energy density is a promising new measure of systolic function

Author:

MacIver David H.,Agger Peter,Rodrigues Jonathan C. L.,Zhang Henggui

Abstract

AbstractThe left ventricular ejection fraction does not accurately predict exercise capacity or symptom severity and has a limited role in predicting prognosis in heart failure. A better method of assessing ventricular performance is needed to aid understanding of the pathophysiological mechanisms and guide management in conditions such as heart failure. In this study, we propose two novel measures to quantify myocardial performance, the global longitudinal active strain energy (GLASE) and its density (GLASED) and compare them to existing measures in normal and diseased left ventricles. GLASED calculates the work done per unit volume of muscle (energy density) by combining information from myocardial strain and wall stress (contractile force per unit cross sectional area). Magnetic resonance images were obtained from 183 individuals forming four cohorts (normal, hypertension, dilated cardiomyopathy, and cardiac amyloidosis). GLASE and GLASED were compared with the standard ejection fraction, the corrected ejection fraction, myocardial strains, stroke work and myocardial forces. Myocardial shortening was decreased in all disease cohorts. Longitudinal stress was normal in hypertension, increased in dilated cardiomyopathy and severely decreased in amyloid heart disease. GLASE was increased in hypertension. GLASED was mildly reduced in hypertension (1.39 ± 0.65 kJ/m3), moderately reduced in dilated cardiomyopathy (0.86 ± 0.45 kJ/m3) and severely reduced in amyloid heart disease (0.42 ± 0.28 kJ/m3) compared to the control cohort (1.94 ± 0.49 kJ/m3). GLASED progressively decreased in the hypertension, dilated cardiomyopathy and cardiac amyloid cohorts indicating that mechanical work done and systolic performance is severely reduced in cardiac amyloid despite the relatively preserved ejection fraction. GLASED provides a new technique for assessing left ventricular myocardial health and contractile function.

Funder

EPSRC

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3