Fully automated plaque characterization in intravascular OCT images using hybrid convolutional and lumen morphology features

Author:

Lee Juhwan,Prabhu David,Kolluru Chaitanya,Gharaibeh YazanORCID,Zimin Vladislav N.,Dallan Luis A. P.,Bezerra Hiram G.,Wilson David L.

Abstract

AbstractFor intravascular OCT (IVOCT) images, we developed an automated atherosclerotic plaque characterization method that used a hybrid learning approach, which combined deep-learning convolutional and hand-crafted, lumen morphological features. Processing was done on innate A-line units with labels fibrolipidic (fibrous tissue followed by lipidous tissue), fibrocalcific (fibrous tissue followed by calcification), or other. We trained/tested on an expansive data set (6,556 images), and performed an active learning, relabeling step to improve noisy ground truth labels. Conditional random field was an important post-processing step to reduce classification errors. Sensitivities/specificities were 84.8%/97.8% and 91.4%/95.7% for fibrolipidic and fibrocalcific plaques, respectively. Over lesions, en face classification maps showed automated results that agreed favorably to manually labeled counterparts. Adding lumen morphological features gave statistically significant improvement (p < 0.05), as compared to classification with convolutional features alone. Automated assessments of clinically relevant plaque attributes (arc angle and length), compared favorably to those from manual labels. Our hybrid approach gave statistically improved results as compared to previous A-line classification methods using deep learning or hand-crafted features alone. This plaque characterization approach is fully automated, robust, and promising for live-time treatment planning and research applications.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3