Ferromagnetism modulation by ultralow current in a two-dimensional polycrystalline molybdenum disulphide atomic layered structure

Author:

Muneta Iriya,Shirokura Takanori,Hai Pham Nam,Kakushima Kuniyuki,Tsutsui Kazuo,Wakabayashi Hitoshi

Abstract

AbstractLayered materials, such as graphene and transition metal dichalcogenides, are able to obtain new properties and functions through the modification of their crystal arrangements. In particular, ferromagnetism in polycrystalline MoS2 is of great interest because the corresponding nonmagnetic single crystals exhibit spontaneous spin splitting only through the formation of grain boundaries. However, no one has reported direct evidence of this unique phenomenon thus far. Herein, we demonstrate ferromagnetism modulation by an ultralow current density < 103 A/cm2 in 7.5-nm-thick polycrystalline MoS2, in which magnetoresistance shows three patterns according to the current intensity: wide dip, nondip and narrow dip structures. Since magnetoresistance occurs because of the interaction between the current of 4d electrons in the bulk and localized 4d spins in grain boundaries, this result provides evidence of the current modulation of ferromagnetism induced by grain boundaries. Our findings pave the way for the investigation of a novel method of magnetization switching with low power consumption for magnetic random access memories.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3