An Experimental Study on the Performance Evaluation and Thermodynamic Modeling of a Thermoelectric Cooler Combined with Two Heatsinks

Author:

Siahmargoi Marzieh,Rahbar NaderORCID,Kargarsharifabad HadiORCID,Sadati Seyed Esmaeil,Asadi AminORCID

Abstract

AbstractThe present study aims to investigate the performance of a one-stage thermoelectric cooler using mathematical and thermodynamic modeling and proposing a new correlation for performance evaluation of a thermoelectric cooler combined with two heatsinks. Validating the results of the proposed correlation, a series of experiments have been carried out on the same system. The system consists of a thermoelectric cooler and a heatsink on each side. Deriving the governing equations of the system, the effects of changing the voltage and the thermal resistance of the cold- and hot-side heatsink on cooling power, the cold-side temperature of thermoelectric, and the coefficient of performance of the system have been investigated. The results indicated that changes in voltage have a considerable effect on the performance of the system. Moreover, the maximum cooling power of the system takes place at the voltage of 14 V, which is the optimum voltage of the system. Furthermore, decreasing the thermal resistance of the hot-side heatsink leads to increasing the cooling power and the cold-side temperature of the thermoelectric cooler. On the other hand, increasing the thermal resistance of the cold-side heatsink leads to decreasing the cooling power of the system.

Funder

Islamic Azad University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3