Production of precision slots in copper foil using micro EDM

Author:

Mouralova Katerina,Bednar Josef,Benes Libor,Plichta Tomas,Prokes Tomas,Fries Jiri

Abstract

AbstractElectrical discharge machining (EDM) is an unconventional machining technology. It allows machining of at least at least electrically conductive materials. The trend of miniaturization of industrial products is obvious. However, the required quality and accuracy must be maintained, which can be achieved with micro-EDM. One of the industrial products is also optical devices used for testing cars. These contain miniaturized parts, which are, however, necessary for their proper functioning. For this reason, this study was performed, which focused on the production of a precise slot measuring 5000 × 170 µm in a copper foil with a thickness of 125 µm. The same copper foil was used as a tool, which represents an advance in the production of micro-parts.The use of the same semi-product for the production of the slit as well as the tool itself has not yet been presented in any similar study. A design of experiment Box and Behnken Response Surface Design was performed for a total of 15 rounds, monitoring the effect of machine setting parameters (Pulse current, Pulse on time and Voltage) on responses in the form of Erosion rate, corner radius, slot length and width. Using multi-criteria optimization, the optimal setting of the machine parameters for the production of a given slit was determined, which is Pulse current = 2.1 A, Pulse on time = 40 µs and Voltage = 238.8 V. Micro-EDM technology has been found to be suitable for the production of miniaturized slits.

Funder

Vysoké Učení Technické v Brně

Univerzite Jan Evangelista Purkyne v Ústí nad Labem

European Union from the European Regional Development Fund

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3