Dielectrophoretic profiling of erythrocytes to study the impacts of metabolic stress, temperature, and storage duration utilizing a point-and-planar microdevice

Author:

Oladokun Raphael,Adekanmbi Ezekiel O.,An Vanessa,Gangavaram Isha,Srivastava Soumya K.

Abstract

AbstractDielectrophoresis (DEP) is widely utilized for trapping and sorting various types of cells, including live and dead cells and healthy and infected cells. This article focuses on the dielectric characterization of erythrocytes (red blood cells or RBCs) by quantifying DEP crossover frequency using a novel point-and-planar microwell device platform. Numerical simulations using COMSOL Multiphysics software demonstrate that the distribution of the DEP force is influenced by factors such as the shape of the point electrode, spacing between the point and planar electrodes, and the type of bioparticle being investigated. The dependency on electrode spacing is experimentally evaluated by analyzing the DEP crossover response of erythrocytes. Furthermore, the results are validated against the traditional electrical characterization technique called electrorotation, which typically requires laborious fabrication and operation using quadrupole electrodes. Other significant factors, including erythrocyte storage age and the changes in cell properties over time since collection, osmolarity, and temperature, are also assessed to determine the optimal conditions for erythrocyte characterization. The findings indicate a significant difference between fresh and stored erythrocyte samples (up to 4 days), highlighting the importance of maintaining an isotonic medium for cell storage.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3