Cloud-enabled Biodepot workflow builder integrates image processing using Fiji with reproducible data analysis using Jupyter notebooks

Author:

Hung Ling-Hong,Straw Evan,Reddy Shishir,Schmitz Robert,Colburn Zachary,Yeung Ka Yee

Abstract

AbstractModern biomedical image analyses workflows contain multiple computational processing tasks giving rise to problems in reproducibility. In addition, image datasets can span both spatial and temporal dimensions, with additional channels for fluorescence and other data, resulting in datasets that are too large to be processed locally on a laptop. For omics analyses, software containers have been shown to enhance reproducibility, facilitate installation and provide access to scalable computational resources on the cloud. However, most image analyses contain steps that are graphical and interactive, features that are not supported by most omics execution engines. We present the containerized and cloud-enabled Biodepot-workflow-builder platform that supports graphics from software containers and has been extended for image analyses. We demonstrate the potential of our modular approach with multi-step workflows that incorporate the popular and open-source Fiji suite for image processing. One of our examples integrates fully interactive ImageJ macros with Jupyter notebooks. Our second example illustrates how the complicated cloud setup of an computationally intensive process such as stitching 3D digital pathology datasets using BigStitcher can be automated and simplified. In both examples, users can leverage a form-based graphical interface to execute multi-step workflows with a single click, using the provided sample data and preset input parameters. Alternatively, users can interactively modify the image processing steps in the workflow, apply the workflows to their own data, change the input parameters and macros. By providing interactive graphics support to software containers, our modular platform supports reproducible image analysis workflows, simplified access to cloud resources for analysis of large datasets, and integration across different applications such as Jupyter.

Funder

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3