Lateral migration resistance of screw is essential in evaluating bone screw stability of plate fixation

Author:

Feng Xiaoreng,Qi Weichen,Zhang Teng,Fang Christian,Liang Hongfeng,Chen Bin,Leung Frankie

Abstract

AbstractConventional evaluation of the stability of bone screws focuses on pullout strength, while neglecting lateral migration resistance. We measured pullout strength and lateral migration resistance of bone screws and determined how these characteristics relate to screw stability of locking plate (LP) and dynamic compression plate (DCP) fixation. Pullout strength and lateral migration resistance of individual bone screws with buttress, square, and triangular thread designs were evaluated in polyurethane foam blocks. The screw types with superior performance in each of these characteristics were selected. LP and DCP fixations were constructed using the selected screws and tested under cyclic craniocaudal and torsional loadings. Subsequently, the association between individual screws’ biomechanical characteristics and fixation stability when applied to plates was established. Screws with triangular threads had superior pullout strength, while screws with square threads demonstrated the highest lateral migration resistance; they were selected for LP and DCP fixations. LPs with square-threaded screws required a larger force and more cycles to trigger the same amount of displacement under both craniocaudal and torsional loadings. Screws with triangular and square threads showed no difference in DCP fixation stability under craniocaudal loading. However, under torsional loading, DCP fixation with triangular-threaded screws demonstrated superior fixation stability. Lateral migration resistance is the primary contributor to locking screw fixation stability when applied to an LP in resisting both craniocaudal and torsional loading. For compression screws applied to a DCP, lateral migration resistance and pullout strength work together to resist craniocaudal loading, while pullout strength is the primary contributor to the ability to resist torsional loading.

Funder

Hong Kong Innovation and Technology Support Programme - Platform Research Projects

Science and Technology Project of Yangjiang city

High-level scientific research project of Yangjiang People's Hospital

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3