Physics-constrained machine learning for electrodynamics without gauge ambiguity based on Fourier transformed Maxwell’s equations

Author:

Leon Christopher,Scheinker Alexander

Abstract

AbstractWe utilize a Fourier transformation-based representation of Maxwell’s equations to develop physics-constrained neural networks for electrodynamics without gauge ambiguity, which we label the Fourier–Helmholtz–Maxwell neural operator method. In this approach, both of Gauss’s laws and Faraday’s law are built in as hard constraints, as well as the longitudinal component of Ampère–Maxwell in Fourier space, assuming the continuity equation. An encoder–decoder network acts as a solution operator for the transverse components of the Fourier transformed vector potential, $$\hat{{\textbf {A}}}_\perp ({\textbf {k}}, t)$$ A ^ ( k , t ) , whose two degrees of freedom are used to predict the electromagnetic fields. This method was tested on two electron beam simulations. Among the models investigated, it was found that a U-Net architecture exhibited the best performance as it trained quicker, was more accurate and generalized better than the other architectures examined. We demonstrate that our approach is useful for solving Maxwell’s equations for the electromagnetic fields generated by intense relativistic charged particle beams and that it generalizes well to unseen test data, while being orders of magnitude quicker than conventional simulations. We show that the model can be re-trained to make highly accurate predictions in as few as 20 epochs on a previously unseen data set.

Funder

Los Alamos National Laboratory LDRD Program Directed Research

U.S. Department of Energy (DOE), Office of Science High Energy Physics

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3