A global mass budget for positively buoyant macroplastic debris in the ocean

Author:

Lebreton Laurent,Egger MatthiasORCID,Slat Boyan

Abstract

Abstract Predicted global figures for plastic debris accumulation in the ocean surface layer range on the order of hundreds of thousands of metric tons, representing only a few percent of estimated annual emissions into the marine environment. The current accepted explanation for this difference is that positively buoyant macroplastic objects do not persist on the ocean surface. Subject to degradation into microplastics, the major part of the mass is predicted to have settled below the surface. However, we argue that such a simple emission-degradation model cannot explain the occurrence of decades-old objects collected by oceanic expeditions. We show that debris circulation dynamics in coastal environments may be a better explanation for this difference. The results presented here suggest that there is a significant time interval, on the order of several years to decades, between terrestrial emissions and representative accumulation in offshore waters. Importantly, our results also indicate that the current generation of secondary microplastics in the global ocean is mostly a result of the degradation of objects produced in the 1990s and earlier. Finally, we propose a series of future emission scenarios until 2050, discussing the necessity to rapidly reduce emissions and actively remove waste accumulated in the environment to mitigate further microplastic contamination in the global ocean.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3