Multi-centre deep learning for placenta segmentation in obstetric ultrasound with multi-observer and cross-country generalization

Author:

Andreasen Lisbeth Anita,Feragen Aasa,Christensen Anders Nymark,Thybo Jonathan Kistrup,Svendsen Morten Bo S.,Zepf Kilian,Lekadir Karim,Tolsgaard Martin Grønnebæk

Abstract

AbstractThe placenta is crucial to fetal well-being and it plays a significant role in the pathogenesis of hypertensive pregnancy disorders. Moreover, a timely diagnosis of placenta previa may save lives. Ultrasound is the primary imaging modality in pregnancy, but high-quality imaging depends on the access to equipment and staff, which is not possible in all settings. Convolutional neural networks may help standardize the acquisition of images for fetal diagnostics. Our aim was to develop a deep learning based model for classification and segmentation of the placenta in ultrasound images. We trained a model based on manual annotations of 7,500 ultrasound images to identify and segment the placenta. The model's performance was compared to annotations made by 25 clinicians (experts, trainees, midwives). The overall image classification accuracy was 81%. The average intersection over union score (IoU) reached 0.78. The model’s accuracy was lower than experts’ and trainees’, but it outperformed all clinicians at delineating the placenta, IoU = 0.75 vs 0.69, 0.66, 0.59. The model was cross validated on 100 2nd trimester images from Barcelona, yielding an accuracy of 76%, IoU 0.68. In conclusion, we developed a model for automatic classification and segmentation of the placenta with consistent performance across different patient populations. It may be used for automated detection of placenta previa and enable future deep learning research in placental dysfunction.

Funder

The Capital Region Research Fund

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3