Synthesis of magnetic nanocarbon using palm oil as the green precursor via microwave-assisted arc for wastewater treatment

Author:

Zakaria Nurul Zariah Jakaria,Rozali Shaifulazuar,Mubarak Nabisab Mujawar,Khalid Mohammad

Abstract

AbstractThe presence of metal with microwave irradiation has always invited controversial arguments as the metal will catch on fire easily. But interestingly, researchers found that arc discharge phenomena provide a promising way for molecule cracking to synthesize nanomaterials. This study developed a single-step yet affordable synthesis approach that combines microwave heating and arcing in transforming crude palm oil into magnetic nanocarbon (MNC), which can be considered a new alternative for the palm oil sectors. It involves synthesizing the medium at a partial inert condition with constant coiled stainless steel metal wire (dielectric media) and ferrocene (catalyst). This approach successfully demonstrates heating at a temperature ranging from 190.9 to 472.0 °C with different synthesis times (10–20 min). The produced MNC shows formations of spheres with average sizes of 20.38–31.04 nm, mesoporous structure (SBET: 14.83–151.95 m2/g), and high content of fixed carbon (52.79–71.24wt%), and the ratio of the D and G bands (ID/IG) is 0.98–0.99. The formation of new peaks in the FTIR spectra (522.29–588.48 cm−1) supports the appearance of the FeO compounds from the ferrocene. The magnetometer shows high magnetization saturation (22.32–26.84 emu/g) in ferromagnetic materials. The application of the MNC in wastewater treatment has been demonstrated by evaluating their adsorbent capability with Methylene Blue (MB) adsorption test at a different concentrations varying between 5 and 20 ppm. The MNC produced at synthesis time (20 min) shows the highest adsorption efficiency (10.36 mg/g) compared to others, with 87.79% removal of MB dye. As a result, the value for Langmuir is not promising compared to Freundlich, with R2 being around 0.80, 0.98, and 0.99 for MNC synthesized at 10 min (MNC10), 15 min (MNC15), and 20 min (MNC20), respectively. Hence, the adsorption system is in a heterogeneous condition. The microwave-assisted arcing thereby presents a promising approach to transforming CPO into MNC that could remove the hazardous dye.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3