Relaxation of a dense ensemble of spins in diamond under a continuous microwave driving field

Author:

Chen Jeson,Chen Oliver Y.,Chang Huan-Cheng

Abstract

AbstractDecoherence of Rabi oscillation in a two-level quantum system consists of two components, a simple exponential decay and a damped oscillation. In dense-ensemble spin systems like negatively charged nitrogen-vacancy (NV) centers in diamond, fast quantum state decoherence often obscures clear observation of the Rabi nutation. On the other hand, the simple exponential decay (or baseline decay) of the oscillation in such spin systems can be readily detected but has not been thoroughly explored in the past. This study investigates in depth the baseline decay of dense spin ensembles in diamond under continuously driving microwave (MW). It is found that the baseline decay times of NV spins decrease with the increasing MW field strength and the MW detuning dependence of the decay times shows a Lorentzian-like spectrum. The experimental findings are in good agreement with simulations based on the Bloch formalism for a simple two-level system in the low MW power region after taking into account the effect of inhomogeneous broadening. This combined investigation provides new insight into fundamental spin relaxation processes under continuous driving electromagnetic fields and paves ways to better understanding of this underexplored phenomena using single NV centers, which have shown promising applications in quantum computing and quantum metrology.

Funder

Ministry of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3