Estimation of biological effect of Cu-64 radiopharmaceuticals with Geant4-DNA simulation

Author:

Kusumoto Tamon,Baba Kentaro,Hasegawa Sumitaka,Raffy Quentin,Kodaira Satoshi

Abstract

AbstractThe aim of this work is to estimate the biological effect of targeted radionuclide therapy using Cu-64, which is a well-known Auger electron emitter. To do so, we evaluate the absorbed dose of emitted particles from Cu-64 using the Geant4-DNA Monte Carlo simulation toolkit. The contribution of beta particles to the absorbed dose is higher than that of Auger electrons. The simulation result agrees with experimental ones evaluated using coumarin-3-carboxylic acid chemical dosimeter. The simulation result is also in good agreement with previous ones obtained using fluorescent nuclear track detector. From the results of present simulation (i.e., absorbed dose estimation) and previous biological experiments using two cell lines (i.e., evaluation of survival curves), we have estimated the relative biological effectiveness (RBE) of Cu-64 emitted particles on CHO wild-type cells and xrs5 cells. The RBE of xrs5 cells exposed to Cu-64 is almost equivalent to that with gamma rays and protons and C ions. This result indicates that the radiosensitivity of xrs5 cells is independent of LET. In comparison to this, the RBE on CHO wild-type cells exposed to Cu-64 is significantly higher than gamma rays and almost equivalent to that irradiated with C ions with a linear energy transfer of 70 keV/μm.

Funder

Japan Society for the Promotion of Science

The Japan Science Society Research, Japan

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Targeted Radionuclide Therapy in Glioblastoma;ACS Applied Materials & Interfaces;2024-07-23

2. In vitro and in vivo characterization of [64Cu][Cu(elesclomol)] as a novel theranostic agent for hypoxic solid tumors;European Journal of Nuclear Medicine and Molecular Imaging;2023-06-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3