Environmental impact assessment of battery boxes based on lightweight material substitution

Author:

Li Xinyu,Zhang Yuanhao,Liao Yumin,Yu Guanghai

Abstract

AbstractPower battery is one of the core components of electric vehicles (EVs) and a major contributor to the environmental impact of EVs, and reducing their environmental emissions can help enhance the sustainability of electric vehicles. Based on the principle of stiffness equivalence, the steel case of the power cell is replaced with lightweight materials, a life cycle model is established with the help of GaBi software, and its environmental impact is evaluated using the CML2001 method. The results can be summarized as follows: (1) Based on the four environmental impact categories of GWP, AP, ADP (f), and HTP, which are the global warming potential (GWP), acidification potential (AP), abiotic depletion potential (ADP (f)) and human toxicity potential (HTP), the environmental impact of lightweight materials is lower than that of the steel box. Among them, the aluminum alloy box has the largest reduction, and the Carbon Fiber Sheet Molding Compound (CF-SMC) box is the second. (2) In the sensitivity analysis of electric structure, an aluminum alloy box is still the most preferable choice for environmental impact. (3) In the sensitivity analysis of driving mileage, the aluminum alloy box body is also the best choice for vehicle life. (4) Quantitative assessment using substitution factors measures the decrease in greenhouse gas emissions following the substitution of steel battery box with lightweight materials. The adoption of aluminum alloy battery box can lead to a reduction of 1.55 tons of greenhouse gas emissions, with a substitution factor of 1.55 tC sb−1. In the case that composite materials have not been recycled commercially on a large scale, aluminum alloy is still one of the best materials for the integrated environmental impact of the whole life cycle of the battery boxes.

Funder

Ministry of Industry and Information Technology Key Equipment Manufacturing Industry Carbon Peak and Carbon Neutral Public Service Platform Project

the National Key Research and Development Program in China

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3