Local scattering ultrasound imaging

Author:

Velichko Alexander,Villaverde Eduardo Lopez,Croxford Anthony J.

Abstract

AbstractUltrasonic imaging is a widely used tool for detection, localisation and characterisation of material inhomogeneities with important applications in many fields. This task is particularly challenging when imaging in a complex medium, where the ultrasonic wave is scattered by the material microstructure, preventing detection and characterisation of weak targets. Fundamentally, the maximum information that can be experimentally obtained from each material region consists of a set of reflected signals for different incident waves. However, these data are not directly accessible from the raw measurements, which represent a superposition of reflections from all scatterers in the medium. Here we show, that a complete set of transmitter–receiver data encodes sufficient information in order to achieve full spatio–temporal separation of transmitter–receiver data, corresponding to different local scattering areas. We show that access to the local scattering data can provide valuable benefits for many applications. More importantly, this technique enables fundamentally new approaches, exploiting the angular distribution of the scattering amplitude and phase of each local scattering region. Here we demonstrate how the local scattering directivity can be used to build the local scattering image, releasing the full potential and richness of the transmit–receive data. As a proof of concept, we demonstrate the detection of small inclusions in various highly scattering materials using numerical and experimental examples. The described principles are very general and can be applied to any research field where the phased array technology is employed.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3