Author:
Seo Hyo-Chang,Oh Seok,Kim Hyunbin,Joo Segyeong
Abstract
AbstractAtrial fibrillation (AF) is an arrhythmia that can cause blood clot and may lead to stroke and heart failure. To detect AF, deep learning-based detection algorithms have recently been developed. However, deep learning models were often trained with limited datasets and were evaluated within the same datasets, which makes their performance generally drops on the external datasets, known as data dependency. For this study, three different databases from PhysioNet were used to investigate the data dependency of deep learning-based AF detection algorithm using the residual neural network (Resnet). Resnet 18, 34, 50 and 152 model were trained with raw electrocardiogram (ECG) signal extracted from independent database. The highest accuracy was about 98–99% which is evaluation results of test dataset from the own database. On the other hand, the lowest accuracy was about 53–92% which was evaluation results of the external dataset extracted from different source. There are data dependency according to the train dataset and the test dataset. However, the data dependency decreased as a large amount of train data.
Funder
This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea governmen
Publisher
Springer Science and Business Media LLC
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献