Efficient end-to-end long-read sequence mapping using minimap2-fpga integrated with hardware accelerated chaining

Author:

Liyanage Kisaru,Samarakoon Hiruna,Parameswaran Sri,Gamaarachchi Hasindu

Abstract

Abstractminimap2 is the gold-standard software for reference-based sequence mapping in third-generation long-read sequencing. While minimap2 is relatively fast, further speedup is desirable, especially when processing a multitude of large datasets. In this work, we present minimap2-fpga, a hardware-accelerated version of minimap2 that speeds up the mapping process by integrating an FPGA kernel optimised for chaining. Integrating the FPGA kernel into minimap2 posed significant challenges that we solved by accurately predicting the processing time on hardware while considering data transfer overheads, mitigating hardware scheduling overheads in a multi-threaded environment, and optimizing memory management for processing large realistic datasets. We demonstrate speed-ups in end-to-end run-time for data from both Oxford Nanopore Technologies (ONT) and Pacific Biosciences (PacBio). minimap2-fpga is up to 79% and 53% faster than minimap2 for $$\sim 30\times $$ 30 × ONT and $$\sim 50\times $$ 50 × PacBio datasets respectively, when mapping without base-level alignment. When mapping with base-level alignment, minimap2-fpga is up to 62% and 10% faster than minimap2 for $$\sim 30\times $$ 30 × ONT and $$\sim 50\times $$ 50 × PacBio datasets respectively. The accuracy is near-identical to that of original minimap2 for both ONT and PacBio data, when mapping both with and without base-level alignment. minimap2-fpga is supported on Intel FPGA-based systems (evaluations performed on an on-premise system) and Xilinx FPGA-based systems (evaluations performed on a cloud system). We also provide a well-documented library for the FPGA-accelerated chaining kernel to be used by future researchers developing sequence alignment software with limited hardware background.

Funder

Australian Research Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Accelerating Chaining in Genomic Analysis Using RISC- V Custom Instructions;2024 Design, Automation & Test in Europe Conference & Exhibition (DATE);2024-03-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3