Increasing benthic vent formation: a threat to Japan’s ancient lake

Author:

Kumagai Michio,Robarts Richard D.,Aota Yasuaki

Abstract

AbstractAn autonomous underwater vehicle (AUV) was deployed in Lake Biwa from 2000 to 2012. In December 2009, ebullition of turbid water was first found in the deepest area (> 90 m) of the North Basin. Follow-up investigations in April and December 2010 and January 2012 confirmed the existence of benthic vents similar to the vents observed in other deep lakes. Importantly, vent numbers per unit travel distance in Lake Biwa dramatically increased from only two vents (0.37 vents km−1) in December 2009 to 54 vents (5.28 vents km−1) in January 2012, which could be related to recent tectonic activity in Japan, e.g., the M9.1 Tohoku earthquake in March 2011 and slow earthquakes along the Nankai Trough from 2006 to 2018. Continuous back-up investigations from 2014 to 2019 revealed additional benthic vents in the same area. The sudden increase in benthic vent activity (liquid and gaseous ebullitions) have significant potential to alter lake biogeochemistry and, ultimately, degrade Japan’s major drinking water source and may be a harbinger of major crustal change in the near future.

Funder

JST SICORP Grant Number, Japan

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sediments and Microbiomes;Wetzel's Limnology;2024

2. Analysis of the effects of climate change on the gyre in Lake Biwa, Japan;Journal of Hydroinformatics;2023-01-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3