A lightweight fire detection algorithm for small targets based on YOLOv5s

Author:

Lv Changzhi,Zhou Haiyong,Chen Yu,Fan Di,Di Fangyi

Abstract

AbstractIn response to the current challenges fire detection algorithms encounter, including low detection accuracy and limited recognition rates for small fire targets in complex environments, we present a lightweight fire detection algorithm based on an improved YOLOv5s. The introduction of the CoT (Contextual Transformer) structure into the backbone neural network, along with the creation of the novel CSP1_CoT (Cross stage partial 1_contextual transformer) module, has effectively reduced the model’s parameter count while simultaneously enhancing the feature extraction and fusion capabilities of the backbone network; The network’s Neck architecture has been extended by introducing a dedicated detection layer tailored for small targets and incorporating the SE (Squeeze-and-Excitation) attention mechanism. This augmentation, while minimizing parameter proliferation, has significantly bolstered the interaction of multi-feature information, resulting in an enhanced small target detection capability; The substitution of the original loss function with the Focal-EIoU (Focal-Efficient IoU) loss function has yielded a further improvement in the model’s convergence speed and precision; The experimental results indicate that the modified model achieves an mAP@.5 of 96% and an accuracy of 94.8%, marking improvements of 8.8% and 8.9%, respectively, over the original model. Furthermore, the model’s parameter count has been reduced by 1.1%, resulting in a compact model size of only 14.6MB. Additionally, the detection speed has reached 85 FPS (Frames Per Second), thus satisfying real-time detection requirements. This enhancement in precision and accuracy, while simultaneously meeting real-time and lightweight constraints, effectively caters to the demands of fire detection.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

National College Students Innovation and Entrepreneurship Training Program

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3