Deep parameter-free attention hashing for image retrieval

Author:

Yang Wenjing,Wang Liejun,Cheng Shuli

Abstract

AbstractDeep hashing method is widely applied in the field of image retrieval because of its advantages of low storage consumption and fast retrieval speed. There is a defect of insufficiency feature extraction when existing deep hashing method uses the convolutional neural network (CNN) to extract images semantic features. Some studies propose to add channel-based or spatial-based attention modules. However, embedding these modules into the network can increase the complexity of model and lead to over fitting in the training process. In this study, a novel deep parameter-free attention hashing (DPFAH) is proposed to solve these problems, that designs a parameter-free attention (PFA) module in ResNet18 network. PFA is a lightweight module that defines an energy function to measure the importance of each neuron and infers 3-D attention weights for feature map in a layer. A fast closed-form solution for this energy function proves that the PFA module does not add any parameters to the network. Otherwise, this paper designs a novel hashing framework that includes the hash codes learning branch and the classification branch to explore more label information. The like-binary codes are constrained by a regulation term to reduce the quantization error in the continuous relaxation. Experiments on CIFAR-10, NUS-WIDE and Imagenet-100 show that DPFAH method achieves better performance.

Funder

Tianshan Innovation Team of Xinjiang Uygur Autonomous Region

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3