Discrete optimal quadratic AGC based cost functional minimization for interconnected power systems

Author:

Esmail M.,Krishnamurthy S.

Abstract

AbstractThe increasing complexity and difficulty of the Automatic generation control (AGC) problem has resulted from the increasing scale of interconnected power networks and changing daily demands. The primary goals of AGC are to control frequency variations at nominal levels and tie-line power variances at planned levels. To effectively deal with AGC control difficulties, this study introduces Discrete Optimal Quadratic Automatic Generation Control (OQAGC). One advantages of this method is the differentiation of quadratic cost function results into linear terms while minimizing control actions and minimizing state deviations. This developed control method leads to a simple and easy discrete control law that can be implemented for both linear and nonlinear systems. For optimizing the controller, this research work utilized an optimum control theorem using Lagrangian multipliers, while the functional minimization technique is used for systematically selecting the state and control weighting matrices in discrete form for N control regions (where N is the number of interconnected power systems). The discrete cost function needs are derived using this technique in terms of area control errors, integral area control errors, and control energy expenditure. Four interconnected power systems were analyzed with/without disturbances and area control errors, each with one thermal, hydro, and gas-generating unit. A two-area multi-source power system with renewable energy in control area 2 is analyzed for the performance of the proposed controller with generation rate constraints (GRCs). The functional minimization technique simplifies and eases the choosing of weighting matrices. Furthermore, the simulation findings suggest that the developed discrete optimum quadratic AGC control-based cost functional minimization approach enhances power system dynamics in terms of stability, steady-state performance, and the closed-loop control system's robustness to input load disturbances. As a result, the newly developed OQAGC approach demonstrates the significance of the discrete LQR controller for N multi-area power systems.

Funder

NRF Thuthuka Grant

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3