A non-volatile cryogenic random-access memory based on the quantum anomalous Hall effect

Author:

Alam Shamiul,Hossain Md Shafayat,Aziz Ahmedullah

Abstract

AbstractThe interplay between ferromagnetism and topological properties of electronic band structures leads to a precise quantization of Hall resistance without any external magnetic field. This so-called quantum anomalous Hall effect (QAHE) is born out of topological correlations, and is oblivious of low-sample quality. It was envisioned to lead towards dissipation-less and topologically protected electronics. However, no clear framework of how to design such an electronic device out of it exists. Here we construct an ultra-low power, non-volatile, cryogenic memory architecture leveraging the QAHE phenomenon. Our design promises orders of magnitude lower cell area compared with the state-of-the-art cryogenic memory technologies. We harness the fundamentally quantized Hall resistance levels in moiré graphene heterostructures to store non-volatile binary bits (1, 0). We perform the memory write operation through controlled hysteretic switching between the quantized Hall states, using nano-ampere level currents with opposite polarities. The non-destructive read operation is performed by sensing the polarity of the transverse Hall voltage using a separate pair of terminals. We custom design the memory architecture with a novel sensing mechanism to avoid accidental data corruption, ensure highest memory density and minimize array leakage power. Our design provides a pathway towards realizing topologically protected memory devices.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3