Scalar invariant transform based deep learning framework for detecting heart failures using ECG signals

Author:

Prusty Manas Ranjan,Pandey Trilok Nath,Lekha Pujala Shree,Lellapalli Gayatri,Gupta Annika

Abstract

AbstractHeart diseases are leading to death across the globe. Exact detection and treatment for heart disease in its early stages could potentially save lives. Electrocardiogram (ECG) is one of the tests that take measures of heartbeat fluctuations. The deviation in the signals from the normal sinus rhythm and different variations can help detect various heart conditions. This paper presents a novel approach to cardiac disease detection using an automated Convolutional Neural Network (CNN) system. Leveraging the Scale-Invariant Feature Transform (SIFT) for unique ECG signal image feature extraction, our model classifies signals into three categories: Arrhythmia (ARR), Congestive Heart Failure (CHF), and Normal Sinus Rhythm (NSR). The proposed model has been evaluated using 96 Arrhythmia, 30 CHF, and 36 NSR ECG signals, resulting in a total of 162 images for classification. Our proposed model achieved 99.78% accuracy and an F1 score of 99.78%, which is among one of the highest in the models which were recorded to date with this dataset. Along with the SIFT, we also used HOG and SURF techniques individually and applied the CNN model which achieved 99.45% and 78% accuracy respectively which proved that the SIFT–CNN model is a well-trained and performed model. Notably, our approach introduces significant novelty by combining SIFT with a custom CNN model, enhancing classification accuracy and offering a fresh perspective on cardiac arrhythmia detection. This SIFT–CNN model performed exceptionally well and better than all existing models which are used to classify heart diseases.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3