Facile synthesis of PEG-glycerol coated bimetallic FePt nanoparticle as highly efficient electrocatalyst for methanol oxidation

Author:

Baruah SarmisthaORCID,Rani BarkhaORCID,Sahu Niroj KumarORCID

Abstract

AbstractDirect methanol fuel cell (DMFC) has shown excellent growth as an alternative candidate for energy sources to substitute fossil fuels. However, developing cost-effective and highly durable catalysts with a facile synthesis method is still challenging. In this prospect, a facile strategy is used for the preparation of hydrophilic Fe-Pt nanoparticle catalyst via a polyethylene glycol-glycerol route to utilize the advantages of nanostructured surfaces. The synthesized electrocatalysts are characterized by XRD, XPS, TEM, EDS and FTIR to confirm their structure, morphology, composition, and surface functionalization. The performance of the catalysts towards methanol oxidation reaction (MOR) was investigated by cyclic voltammetry and chronoamperometry in both acidic and alkaline media. The Fe-Pt bimetallic catalyst exhibits better current density of 36.36 mA cm−2 in acidic medium than in alkali medium (12.52 mA cm−2). However, the high If/Ib ratio of 1.9 in alkali medium signifies better surface cleaning/regenerating capability of catalyst. Moreover, the catalyst possessed superior cyclic stability of ~ 80% in the alkaline electrolyte which is 1.6 times higher than in the acidic one. The better stability and poison tolerance capacity of catalyst in alkaline media is attributed to the OH ions provided by the electrolyte which interact with the metal species to form M-(OH)x and reversibly release OH and regenerate metal surface for further oxidation reactions. But synergism provided by Fe and Pt gives better activity in acidic electrolyte as Pt is favourable catalyst for dehydrogenation of methanol in acidic medium. This study will be useful for designing anodic electrocatalysts for MOR.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3