Optimization of Y and T-shaped microchannels for liquid–liquid extraction

Author:

Morshedaski Negah,Raji Farshad,Rahbar-Kelishami Ahmad

Abstract

AbstractSolvent extraction on a micro-scale has received much attention due to its advantages in recent years. The purpose of this research is to compare the inlet geometry of T and Y-shaped microchannels. In this research, solvent extraction of Crystal Violet (CV) was investigated using Di-(2-ethylhexyl) phosphoric acid (D2EHPA) extractor and hexane solvent in Y and T-shaped microchannels with lengths of 4, 6, and 8 cm. The effect of parameters such as inlet geometry, length of microchannels (4–8 cm), dye solution pH (3–11), flow rate (1–1.5 mL/h) and the concentration of CV (25–75 ppm) was investigated. The Results showed that under the same conditions, Y-shaped microchannel performance is better than T-shaped microchannel. pH of dye solution phase, flow rate, inlet CV concentration, and microchannel length were obtained as optimal conditions for extraction, 10.9, 1.1 mL/h, 46.4 ppm, and 7.6 cm, respectively, and the amount of extraction, in this case, was % 97/96 was obtained.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3