Measuring and classifying IP usage scenarios: a continuous neural trees approach

Author:

Li Zhenhui,Zhou Fan,Wang Zhiyuan,Xu Xovee,Liu Leyuan,Yin Guangqiang

Abstract

AbstractUnderstanding user behavior via IP addresses is a crucial measure towards numerous pragmatic IP-based applications, including online content delivery, fraud prevention, marketing intelligence, and others. While profiling IP addresses through methods like IP geolocation and anomaly detection has been thoroughly studied, the function of an IP address—e.g., whether it pertains to a private enterprise network or a home broadband—remains underexplored. In this work, we initiate the first attempt to address the IP usage scenario classification problem. We collect data consisting of IP addresses from four large-scale regions. A novel continuous neural tree-based ensemble model is proposed to learn IP assignment rules and complex feature interactions. We conduct extensive experiments to evaluate our model in terms of classification accuracy and generalizability. Our results demonstrate that the proposed model is capable of efficiently uncovering significant higher-order feature interactions that enhance IP usage scenario classification, while also possessing the ability to generalize from the source region to the target one.

Funder

National Natural Science Foundation of China

Kashgar Science and Technology Bureau, China

Publisher

Springer Science and Business Media LLC

Reference40 articles.

1. Laki, S. et al. Spotter: A model based active geolocation service. In INFOCOM, 3173–3181 (2011).

2. Wang, Y., Burgener, D., Flores, M., Kuzmanovic, A. & Huang, C. Towards street-level client-independent IP geolocation. NSDI 11, 27 (2011).

3. Hulden, M., Silfverberg, M. & Francom, J. Kernel density estimation for text-based geolocation. In AAAI, 145–150 (2015).

4. Liu, T., Qi, Y., Shi, L. & Yan, J. Locate-then-detect: Real-time web attack detection via attention-based deep neural networks. In IJCAI, 4725–4731 (2019).

5. Xu, X., Zhou, F., Zhang, K. & Liu, S. C. C. G. L. Contrastive cascade graph learning. TKDE 35, 4539–4554 (2022).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3