Investigating the activation of passive metals by a combined in-situ AFM and Raman spectroscopy system: a focus on titanium

Author:

Casanova L.,Menegazzo M.,Goto F.,Pedeferri M.,Duò L.,Ormellese M.,Bussetti G.

Abstract

AbstractUnderstanding the main steps involved in the activation of passive metals is an extremely important subject in the mechanical and energy industry and generally in surface science. The titanium-H2SO4 system is particularly useful for this purpose, as the metal can either passivate or corrode depending on potential. Although several studies tried to hypothesise the surface state of the electrode, there is no general consensus about the surface state of Ti in the active–passive transition region. Here by combining in-situ atomic force microscopy (AFM) and Raman spectroscopy, operating in an electrochemical cell, we show that the cathodic electrification of Ti electrodes causes the dissolution of the upper TiO2 portion of the passive film leaving the electrode covered by only a thin layer of titanium monoxide. Fast anodic reactions involved the acidification of the solution and accumulation of sulphur containing anions. This produces a local increase of the solution turbidity, allowing to distinguish favourable regions for the precipitation of TiOSO4·2H2O. These results give a clear answer to the long-stated question of the physical origin behind the formation of negative polarization resistances, sometimes occurring in corroding systems, and a rationale about the proton-induced degradation of passive surfaces in presence of sulphur containing species.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3