Predictive model for a second hip fracture occurrence using natural language processing and machine learning on electronic health records

Author:

Larrainzar-Garijo Ricardo,Fernández-Tormos Esther,Collado-Escudero Carlos Alberto,Alcantud Ibáñez María,Oñorbe-San Francisco Fernando,Marin-Corral Judith,Casadevall David,Donaire-Gonzalez David,Martínez-Sanchez Luisa,Cabal-Hierro Lucia,Benavent DiegoORCID,Brañas Fátima

Abstract

AbstractHip fractures (HFx) are associated with a higher morbidity and mortality rates, leading to a significant reduction in life quality and in limitation of patient´s mobility. The present study aimed to obtain real-world evidence on the clinical characteristics of patients with an initial and a second hip fracture (HFx) and develop a predictive model for second HFx using artificial intelligence. Electronic health records from one hospital centre in Spain from January 2011 to December 2019 were analysed using EHRead® technology, based on natural language processing and machine learning. A total of 1,960 patients with HFx were finally included during the study period after meeting all inclusion and exclusion criteria. From this total, 1835 (93.6%) patients were included in the HFx subgroup, while 124 (6.4%) were admitted to the second HFx (2HFx) subgroup. The mean age of the participants was 84 years and 75.5% were female. Most of comorbidities were more frequently identified in the HFx group, including hypertension (72.0% vs. 67.2%), cognitive impairment (33.0% vs. 31.2%), diabetes mellitus (28.7% vs. 24.8%), heart failure (27.6% vs. 22.4%) and chronic kidney disease (26.9% vs. 16.0%). Based on clinical criteria, 26 features were selected as potential prediction factors. From there, 16 demographics and clinical characteristics such as comorbidities, medications, measures of disabilities for ambulation and type of refracture were selected for development of a competitive risk model. Specifically, those predictors with different associated risk ratios, sorted from higher to lower risk relevance were visual deficit, malnutrition, walking assistance, hypothyroidism, female sex, osteoporosis treatment, pertrochanteric fracture, dementia, age at index, osteoporosis, renal failure, stroke, COPD, heart disease, anaemia, and asthma. This model showed good performance (dependent AUC: 0.69; apparent performance: 0.75) and could help the identification of patients with higher risk of developing a second HFx, allowing preventive measures. This study expands the current available information of HFx patients in Spain and identifies factors that exhibit potential in predicting a second HFx among older patients.

Publisher

Springer Science and Business Media LLC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3