Association between different sensory modalities based on concurrent time series data obtained by a collaborative reservoir computing model

Author:

Kanemura Itsuki,Kitano Katsunori

Abstract

AbstractHumans perceive the external world by integrating information from different modalities, obtained through the sensory organs. However, the aforementioned mechanism is still unclear and has been a subject of widespread interest in the fields of psychology and brain science. A model using two reservoir computing systems, i.e., a type of recurrent neural network trained to mimic each other's output, can detect stimulus patterns that repeatedly appear in a time series signal. We applied this model for identifying specific patterns that co-occur between information from different modalities. The model was self-organized by specific fluctuation patterns that co-occurred between different modalities, and could detect each fluctuation pattern. Additionally, similarly to the case where perception is influenced by synchronous/asynchronous presentation of multimodal stimuli, the model failed to work correctly for signals that did not co-occur with corresponding fluctuation patterns. Recent experimental studies have suggested that direct interaction between different sensory systems is important for multisensory integration, in addition to top-down control from higher brain regions such as the association cortex. Because several patterns of interaction between sensory modules can be incorporated into the employed model, we were able to compare the performance between them; the original version of the employed model incorporated such an interaction as the teaching signals for learning. The performance of the original and alternative models was evaluated, and the original model was found to perform the best. Thus, we demonstrated that feedback of the outputs of appropriately learned sensory modules performed the best when compared to the other examined patterns of interaction. The proposed model incorporated information encoded by the dynamic state of the neural population and the interactions between different sensory modules, both of which were based on recent experimental observations; this allowed us to study the influence of the temporal relationship and frequency of occurrence of multisensory signals on sensory integration, as well as the nature of interaction between different sensory signals.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3